miR-1 Exacerbates Cardiac Ischemia-Reperfusion Injury in Mouse Models
نویسندگان
چکیده
Recent studies have revealed the critical role of microRNAs (miRNAs) in regulating cardiac injury. Among them, the cardiac enriched microRNA-1(miR-1) has been extensively investigated and proven to be detrimental to cardiac myocytes. However, solid in vivo evidence for the role of miR-1 in cardiac injury is still missing and the potential therapeutic advantages of systemic knockdown of miR-1 expression remained unexplored. In this study, miR-1 transgenic (miR-1 Tg) mice and locked nucleic acid modified oligonucleotide against miR-1 (LNA-antimiR-1) were used to explore the effects of miR-1 on cardiac ischemia/reperfusion injury (30 min ischemia followed by 24 h reperfusion). The cardiac miR-1 level was significantly increased in miR-1 Tg mice, and suppressed in LNA-antimiR-1 treated mice. When subjected to ischemia/reperfusion injury, miR-1 overexpression exacerbated cardiac injury, manifested by increased LDH, CK levels, caspase-3 expression, apoptosis and cardiac infarct area. On the contrary, LNA-antimiR-1 treatment significantly attenuated cardiac ischemia/reperfusion injury. The expression of PKCε and HSP60 was significantly repressed by miR-1 and enhanced by miR-1 knockdown, which may be a molecular mechanism for the role miR-1 in cardiac injury. Moreover, luciferase assay confirmed the direct regulation of miR-1 on protein kinase C epsilon (PKCε) and heat shock protein 60 (HSP60). In summary, this study demonstrated that miR-1 is a causal factor for cardiac injury and systemic LNA-antimiR-1 therapy is effective in ameliorating the problem.
منابع مشابه
The protective effect of bone marrow-derived mesenchymal stem cells in liver ischemia/reperfusion injury via down-regulation of miR-370
Objective(s): Liver transplantation is the most important therapy for end-stage liver disease and ischemia reperfusion (I/R) injury is indeed a risk factor for hepatic failure after grafting. The role of miRNAs in I/R is not completely understood. The aim of this study was to investigate the potential protective role of the mesenchymal stem cells (MSCs) and ischemic pr...
متن کاملInhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats
Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...
متن کاملDonor brain death exacerbates complement-dependent ischemia/reperfusion injury in transplanted hearts.
BACKGROUND Brain death (BD) can immunologically prime the donor organ and is thought to lead to exacerbated ischemia/reperfusion injury after transplantation. Using a newly developed mouse model of BD, we investigated the effect of donor BD on posttransplantation cardiac ischemia/reperfusion injury. We further investigated the therapeutic effect of a targeted complement inhibitor in recipients ...
متن کاملPioglitazone alleviates oxygen and glucose deprivation-induced injury by up-regulation of miR-454 in H9c2 cells
Objective(s): Pioglitazone, an anti-diabetic agent, has been widely used to treat type II diabetes. However, the effect of pioglitazone on myocardial ischemia reperfusion injury (MIRI) is still unclear. Herein, the objective of this study is to learn about the regulation and mechanism of pioglitazone effects on oxygen glucose deprivation (OGD)-induced myocardial cell injury.Materials and Method...
متن کاملmiR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury
Limited microRNAs (miRNAs, miRs) have been reported to be necessary for exercise-induced cardiac growth and essential for protection against pathological cardiac remodeling. Here we determined members of the miR-17-92 cluster and their passenger miRNAs expressions in two distinct murine exercise models and found that miR-17-3p was increased in both. miR-17-3p promoted cardiomyocyte hypertrophy,...
متن کامل